
JOURNAL OF COMPUTATIONAL PHYSICS 53, 72-81 (1984) 

On a Class of Least-Squares Curve-Fitting Problems 

IAN J. M. BOOTH AND ANDREW D. BOOTH 

Institute of Ocean Sciences, P. 0. Box 6000, Sidney, 
British Columbia VSL 4B2, Canada 

Received November 30, 1982; revised April 15, 1983 

Two dielectric constant equations and the Lorentzian curve as a representation of spectral 
line profiles are shown to be special cases of a general curve-fitting problem. It is shown how, 
in these cases, the problem can be reduced to one in two variables and suggestions for 
appropriate computer solutions are presented. For the particular cases cited, it is shown that 
two are likely to lead to convergent processes, whilst the third may encounter difficulties with 
relative minima. 

During recent months we have been involved in the generation of least-squares fits 
to data from three classes of a physical problem. 

First, the Lorentzian fit to a set of frequency-amplitude data whose assumed form 
is 

E(o)=A +B/[c*+(w-wJZ] (1) 

where E(w) is the observed amplitude at frequency cc), and A, B, C and o,, are 
constants to be so determined as to minimize 

R = x (E(o) -A - B/[C* + (co - We)‘])‘. 
w 

The second problem occurs in dielectric constant theory where 

-b(o) = (E, - &,>IW, + (1 - W21 

and here 

f+II7J[l +c02Tgz] (i= 132) 

and G is a constant. 
The third problem is again from dielectric theory and involves the Cole-Davidson 

approximation [ 1 ] for complex dielectric constants: 

E,(o) - iE2(w) = cl + (co - sr)/(l + iwT)’ (3) 
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where E,(w) and E,(o) are the observed quantities for angular frequency o, and E,, 
E, , T and p are the constants whose optimum values are to be determined. 

All of the above equations are, to some extent at least, non-linear and all involve 
the determination of four real constants. 

The object of this note is to indicate a simple method of computation which will, 
generally, produce rapid convergence to the desired solution, and which requires no 
large main-frame computer. Rather it is well adapted to the capacity of the small 
“personal” computers which are now available to most scientists. 

It should be noted that many other minimization procedures are available [2, 31. 
The advantages of the present method are that it consumes less program storage 
space than those methods which involve the calculation of first, and sometimes 
second, derivatives. Furthermore, since it is effectively an interval halving procedure, 
preceded by an overall “survey,” it tends not to fall into relative minima. In the latter 
connection, however, the last section of this paper is revealing. 

REDUCTION TO A STANDARD FORM 

We first note that Eq. (1) is of the form 

E(o) = AF,(C, D, w) + BF,(C, D, co) (4) 

where, in this case, F,(C, D, o) = 1. Equation (2) can be reduced to the same form 
by taking 

A = (E, - E,)G 

F,(C, D, w> = f, - fi 

whereC=T,,D=T,,B=(sO-eJandF,=f,. 
Equation (3) is somewhat more complicated. We first separate real and imaginary 

parts to obtain 

E,(o) = E, + (E,, - si)(l + w*T*)-~‘* cos(/3@) 

E,(w) = (co - cl)(l + LO*T*)-~‘* sin(@) 

where 

(1 + w*T*)~‘* exp(i#) = 1 + iwT 

tan I$ = WT 

whence, using (5) again, 

E,(w) = El + (% - El)(COS 4y costp#> = E, + (E, - El) C,(w) 

E*(W) = (co - .c,)(cos 4)” sin(&) = (E, - cl) C,(w) (say>. 

(5) 

(6) 

(7) 
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We see that, to effect a least-squares fit, we must minimize 

R =x [E,,(w) - 
0 &I - hl -&,I w41* + I&(~> - (hl- El) w] * 

where E,,(w) and E,,(o) denote the experimentally determined values. 
The values of E, and E, are obtained from 

aR 
- = -2 2 C,(~V,,(~) - El - hl - El) C,(~>l 
a% w 

+ C,(wW*o(~) - (%-Ed C*(o)l= 0 

and 

aR 
-= -2 x (1 - C,(w))[E,o(w) - El - (hl - Ed C,(o)1 
a&, 

It is clear that these two equations are linear in E, and E, and can easily be solved 
explicitly to give their optimum values in terms of o and /l if these were known. 

An exactly similar argument applies to our “standard” form (4). Here 

R = x [E(w) - AF, - BF,] * 
w 

whence A and B are determined from 

aR 
-=-2xF,[E(w)-AF,-BF,]=O 
aA w 

aR 
-=-2~F,[E(w)-AF,-BF,]=O 
aB w 

which lead to 

and thus to 

A = C, F: . Cm F,E(o) - C, F,Fz .C, F&(o) 
Co, F: . Co F; - (Co, F,Fd* 

B= C,F: .C,F,E(o)-ZC,f',F2. C,F,E(") 

C, F: . C, F: - CL F,FJ* ' 

(8) 

(9) 
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A Useful Approximation for the Cole-Davidson Case 

Inspection of typical plots of EZ(m) vs w shows the general form of Fig. 1. 
It is of interest to investigate the location of the maximum. At this point we have 

dE,/dw = 0. Now 

dE, dE, d@ -=-.- 
do dc4 dw 

and, using (6) and (7), we have 

4 -= Tcos=$ 
dw 

and now 

dE2 -&- = (E(’ - F,)(-p cos 4 ‘4)(sin q5 sin /?4 - cos 4 cos /@) 

whence 

dE2 -= T~(~~-~,)cos~+‘~cos[(P+ I)$]. 
du 

Thus, for dE,/dw = 0 one of the following must be true: 

(i) cos 4 = 0, 

(ii) /3 = 0, 

(iii) cos(Q3 + l)#) = 0. 

.-A.-~ ~~~ &-, 
100 ldO0 * 10,000 105 

FREQUENCYHZ 

. 
FIG. I. A typical plot of E>(w) vs frequency showing the existence of a maximum. 
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(i) leads to w7’= co, which is clearly unacceptable, (ii) is similarly unrewarding, but 
(iii) gives 

@?+ l)tan~‘(oT)=71/2 

or 

T = tan(rc/2(/3 + l))/w. (10) 

Since, in practice, /I varies only slowly with frequency for a given substance, Eq. 
(8) with a mean value of /3 allows an adequate initial estimate of T to be made. In 
some data supplied to us by Dr. S. Walker [4] it transpired that /3 = 0.65 provided a 
useful starting value. 

THE MINIMIZATION PROCESS 

On a large and fast machine it might prove profitable to apply some direct iterative 
procedure to the solution of the equations 

3R 
0, 

t3R C3R 
-= 
f3A aB= 

0, z=o, g=o 

for example, the method of steepest descents [5, 61. However, even for relatively 
simple forms of F,(C, D, w), F,(C, D, w) the algebra becomes formidable and, with 
the interpreter types of operating system used in small computers, the running time is 
usually prohibitive. 

Instead we have found that a simple procedure, based upon R itself, is fast and 
adequate. Consider first a single dimension, and assume that an approximation x0 to 
the maximum of R(x) is known. It is easily shown [7] that if R(x) is evaluated at 
x-,, x,, and x+r, where x0-x-, = x, - x,, = h (say), then a better approximation to 
the minimum, or maximum, is 

R(x-,) - R(x,) 
x=xo+ 2[R(xJ-2R(x,)+R(x+,)] *” 

(1’) 

In two dimensions the situation is slightly more complicated. Several strategies are 
available but the one which gave the best performance in terms of minimizing 
machine operations (and hence running time) and, at the same time, having an accep- 
table rate of convergence is derived from a well-known two-dimensional interpolation 
formula [8], and it is based on the sampling scheme shown in Fig. 2. 

If we consider a function R(x, y) to have a minimum in proximity to (x0, y,), then, 
defining 
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FIG. 2. Sampling scheme for residuals. 

a2x = R(1) - 2R(O) + R(4) 

d2y = R(3) - 2R(O) + R(5) 

6xy=R(O)-R(l)+R(2)-R(3) 

A = 2[62x 69 - (6xy)2] 

a better approximation to the minimum (measured from R(0)) has coordinates 

x = [R(4) -R(l)] S’Y - [R(5) -R(3)] 6XY . h 
A 

Y= 
[R(5) -R(3)] a2x - [R(4) - R(l)1 6XY . k 

A 

(12) 

where h and k are the respective x and y steps. 
The iterative solution process is thus: 

1. Establish initial estimates of the parameters, by inspection or otherwise. 

2. Using Eqs. (9) together with the equation for R, calculate the values of the 
residual at the points R(0) .e. R(5) defined in Fig. 2. 

3. Using Eqs. (12) calculate new approximations to C and D. 

4. Recalculate R(0) at the new trial point. If R(O) is acceptably small then end. 
Or else, repeat the process from step 2 reducing step lengths if required. 
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AN ACTUAL PROGRAMME 

To show the simplicity of the process, we present, in Table I, an actual 
programme, written in BASIC, for investigating the convergence of the two time 
constant case of Eq. (2). Since this programme was designed for convergence 
investigations the actual function values are calculated (lines S&90) rather than 
observed as would normally be the case. 

The programme is designed so as not to require initial parameter investigation. 
This is achieved by a “general survey” over all realistic parameter values over a grid 
(lines 100-190). Since the frequency scale of real dielectric observations is 
exponential, to effect a suitable compression, logarithms are taken at line 110 and 
reconverted at line 130. A subroutine is used (lines 440-5 10) to evaluate the residue 
R and the survey programme simply takes as the best starting values those producing 
the smallest R in the field. 

In connection with this subroutine it should be noted that a simple algebraic 
manipulation enables the residual to be calculated in a single pass through the data. 
That is, it is not necessary to first calculate values of A and B as described by Eq. (9) 
and then compute R in a second iteration. It is easily shown that 

R = 1 E(w)’ - A x F, E(w) - B x F,E(CO) (13) 
w w 0, 

and notice that 2, E(o)’ (=EE in the programme) needs to be calculated only once 
and this is done in line 90 of the programme. The advantage of using Eq. (13) is that 
it enables R to be calculated in a single iterative cycle, rather than in the two cycles 
which are needed if A and B are calculated first and then a direct calculation of R is 
made ab initio. This maximizes the speed of execution. The disadvantage lies in the 
fact that, using (13), R may result from the subtraction of large quantities and this 
may lead to loss of significance in the result when R is itself small. We have not 
encountered this problem and Eq. (13) is used in line 500 of the subroutine. 

The alternative form, which does not use Eq. (13), is listed as lines 5000-5010. 
When the programme is run on a PET 2001 computer, the running time, for the 
parameters given in the programme, is 4 minutes 10 seconds. If the alternative lines 
are substituted for lines 500-510 the running time is increased to 6 minutes 35 
seconds. 

The approximations having been obtained, the refinement process described above 
is initiated at line 200. Note the use of Eq. (10) at lines 24&330, and the step length 
reduction at line 350. 

The remainder of the programme is concerned with merely stoping at the 
preassigned accuracy using the convergence criterion H2< = 1E - 9 on line 370, and 
then to print the parameters (lines 390-400) and finally a table of calculated values 
(lines 4 l(1-430). 

Similar programmes have been written for the Lorentzian and complex dielectric 
constant case. 
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OBSERVATIONS ON THE USE OF THE METHOD 

It has been found, in extensive tests, that the process works well for each of the 
physical problems described at the start of this paper, and converges to a minimum in 
fewer than 20 iterations. The programme has been used on a CBM-PET 2001, a 
VIC 20 (with 8K expansion), an Apple 112 and a TRS-80/111 computer, and the 
running times were all less than 5 minutes. 

An alternative programme, written in FORTRAN 80 for a TRS-80, Model III, had 
running times of less than 2 minutes. 

Whilst convergence was always observed, however, it was found that when T, 
approaches 80% of T, in Eq. (2), the process converges to “incorrect” values. 

On further investigation it was found that the “incorrect” value actually gave a 
zero value for the residual, to the 9D accuracy of the calculations. This prompted a 
further examination of the nature of the field of residuals in all three cases. To do 
this, three-dimensional plots of the residual fields were made using a large computer. 
The results, for the Lorentzian and for the complex dielectric cases, show the 
presence of well-defined, and unique, minima. 

FIG. 3. Three-dimensional plot of a typical residual field for the two relaxation time problem. Note 
the slit-like depressions at the minima. 



LEAST-SQUARES CURVE-FITTING PROBLEMS 81 

When the situation modelled by Eq. (2) is investigated, however, a different 
situation prevails. This is shown in Fig. 3. First, it is evident from Eq. (2) that there is 
symmetry about T, = T,, and this. guarantees the presence of at least two minima, 
but worse is to come. The region of the minimum is seen to be a slit-like depression 
and closer examination reveals the presence of relative minima along its length when 
T, approaches T, in value. It follows that no method of fitting based on minimization 
can be guaranteed to produce correct results as T, approaches T,. 

In adapting the programme of Table I for use with observational data the following 
points may be of interest. 

First, it is useful to store the data in a disc (or tape) file. Not only does this 
provide a permanent record, but it also enables an adequate editing routine to be 
used. Second, in the case of the Lorentzian and Cole-Davidson formulae, a general 
survey is not necessary. In place of this Eq. (11) can be used, in conjunction with the 
data in the region of the maximum, to estimate the initial trial for o. In the 
Lorentzian case this is used directly, and for the Cole-Davidson formula Eq. (10) 
then gives a trial value of T. 

Finally, if readers are interested in having a printout of a fully operational version 
of the Cole-Davidson programme suitable for a CBM-PET-VIC series machine they 
should write to the authors. 
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